lunes, 12 de diciembre de 2011

Permutaciones

La Técnica de la Permutación
Como vimos anteriormente la técnica de la multiplicación es aplicada para encontrar el número posible de arreglos para dos o más grupos. La técnica de la permutación es aplicada para encontrar el número posible de arreglos donde hay solo u grupo de objetos. Como ilustración analizaremos el siguiente problema: Tres componentes electrónicos - un transistor, un capacitor, y un diodo - serán ensamblados en una tablilla de una televisión. Los componentes pueden ser ensamblados en cualquier orden. ¿De cuantas diferentes maneras pueden ser ensamblados los tres componentes?
Las diferentes maneras de ensamblar los componentes son llamadas permutaciones, y son las siguientes:
T D C D T C C D T
T C D D C T C T D
Permutación: Todos los arreglos de r objetos seleccionados de n objetos posibles
La fórmula empleada para contar el número total de diferentes permutaciones es:
n P r = n!
(n – r )!
Donde:
nPr es el número de permutaciones posible
n es el número total de objetos
r es el número de objetos utilizados en un mismo momento
n P r = n! = 3! = 3 x 2 = 6
(n – r )!  ( 3 – 3 )!  1 
Ejemplo:
Suponga que hay ocho tipos de computadora pero solo tres espacios disponibles para exhibirlas en la tienda de computadoras. ¿De cuantas maneras diferentes pueden ser arregladas las 8 máquinas en los tres espacios disponibles?
n P r = n! = 8! = 8! = 336
(n – r )!  ( 8 – 3 )!  5! 
En el análisis anterior los arreglos no presentan repeticiones, es decir, no hay dos espacios disponibles con el mismo tipo de computadora. Si en los arreglos se permite la repetición, la fórmula de permutaciones es la siguiente:
n Pr = nr
Para ilustrar el punto, queremos saber ¿cuántas series de 2 letras se pueden formar con las letras A, B, C, si se permite la repetición? Las permutaciones son las siguientes:
AA, AB, AC, BA, CA, BB, BC, CB, CC
Usando la fórmula:
n Pr = nr = 3P2 = 32 = 9

No hay comentarios:

Publicar un comentario en la entrada